Node-RED: PAC Email Alerts (analoq)

The most basic condition for alerts is when some variable takes on a value outside of a
predefined threshold—whether that value is too high, too low, or changing too quickly. These
are easy conditions to test for in Node-RED, so it is fairly straight forward to set up an alert
system based on analog or digital signals from a SNAP PAC system like the Learning Center
used in this example (part number SNAP-PACLC).

In this post, I'll explain how to set up multiple levels of alerts for an analog input channel.

Before you begin:
A On your groov Box, upgrade Node-RED —ideally, to the latest version,v0.17.4+— to get
node-red-node-email 0.1.23+.
You'll also need the SNAP PAC nodes.

Analog input, multiple levels of alerts

Node-RED can handle complex alert systems, like sending emails with different content
and different recipients based on what range some variable is in. The value | will use is from the
Learning Center potentiometer, read through a SNAP PAC analog input module.

1. Start by regularly checking the level of the input with a once-per-second inject node.

= Payload = timastamp

= Topic

' Repeat interval v
every 1 _|| seconds

¥ Inject once at start?

O
timestamp % Name inject 1/s

2. Next grab a SNAP PAC Read node. (Install the package if you don’t see them.)
SO

http://www.opto22.com/site/pr_details.aspx?cid=1&item=SNAP-PACLC
http://developer.opto22.com/nodered/pac/getting-started/node-red-install-pac/
http://developer.opto22.com/nodered/pac/getting-started/node-red-install-pac/

Double-click the new node to edit it:

@ Controller Add new pac-device. . x| &

Then, select the pencil icon to add your PAC device.
Enter the PAC address and configure SSL certificates if using HTTPS; otherwise, just
enter an authentication key for the controller, and continue.

@ PAC Address | HTTP v || 10.192.58.11

& APl Key ID node-red B Valug | seeresn

| am going to send an alert when the fuel level is low, so Fuel_Level is the tag | will
watch. (This tag is in the PAC Control Learning Center convenience store strateqy.)

@ Controller 10.192.58 11 x| |
= Data Type Analog Input ¥

% Tag Name Fuel Level

Value msg.payload
= Topic + Do not alter
& Mode Name

Wire the first groov node to the inject timer, and then drag in a second groov Read node:

- imect s O —,

As you can see, in the Data Type drop-down list, it is possible to read both analog and
digital input and output states, as well as variables, timers, tables, and details from the
controller. After getting Fuel_Level, | am going to read in the 32-bit integer,

Fuel Low_Limit, once again set up for the convenience store. This provides a “real”
piece of data to compare the analog input to. Reading it every time means that changing
it in the PAC will change Node-RED’s behavior automatically.

http://developer.opto22.com/nodered/pac/getting-started/node-red-snap-pac-1/#step-2---configure-the-snap-pac-node
http://developer.opto22.com/nodered/pac/getting-started/controller-configuration/#step-4---configure-api-keys
http://www.opto22.com/site/downloads/dl_drilldown.aspx?aid=2977

8. msg.payload already has Fuel_Level in it but that’s not a problem—just define a new
property of the message object to put this value in: msg.Fuel Low_Limit.

i :i?é:-ié.[f = Data Type Int32 Variable b

% Tag Mame Fuel Low Limit

Value + msg. Fuel_Low_Limit

9. Now use a switch node to make the comparison, and let the flow through only when the
Fuel Level (in msg.payload) is below the Fuel Low_Limit threshold.

o

—

et 5 @

]
< fuellow? O

¥ Namea fuel low?
Property = msg. payload
a= v || = msg. Fuel Low Limit —=1 |x

10. I am going to go a step further and add an early warning as well, to raise an alert when
the fuel level is approaching low, and then notify a different group of recipients when the
fuel level is below the hard limit. Select “stopping after first match” to send to only one

group at a time, and then click Add.
This will make switch behave like an else-if ladder rather than a series of if

statements, so that no more than one will pass.

stopping after first match

11. On the second condition click the msg. drop-down, and then select expression.

¥ Mams fuel low?

Property * msg. payload

== ¥ | | = msg. Fuel Low Limit =1 |x

<= v |+ F msgFuel Low Limit*2 | —2 |x
msg.
flow.
global.
& string
0, number
| expression

previous value

12. Choose <=, and then enter “msg.Fuel_Low_Limit * 2" as the expression to get a higher
limit—this way Node-RED will send out an early warning before the low limit is hit.

From the node’s info tab, | know that when a message arrives, the node will
evaluate each of the defined rules and forward the message to the corresponding
outputs of any matching rules. However, | have set the node to stop evaluating rules
once it finds one that matches. (That's what the “stopping after first match” option does.)
This way only one message goes out as either fuel warning or fuel low—there’s no point
in giving an early warning at the same time as giving a low alert, but | want to make sure
a warning won'’t be sent instead of a low alert, so | check low first.

13. To show the flexibility of this node, it is possible to also compare to a hardcoded literal
number, say 250, and send a “fuel critical” message. This condition is even more strict,
so to change the condition order, go ahead and grab the hamburger (=) handle on the
left of the condition, and then drag it to the top.

<= v || msg. Fuel Low Limit —+2 |

Y| » F msgFuel Low Limit*2 e — 3w

You can also label the ports to keep track while wiring in the next nodes:

« port labels
Inputs
1; ®
Cutputs
1; critical "
2 lowr %
3. | warning %
_,‘—’.“__..-—"" f-_l
< tuellow? %—E”m-a-' ;
| '.."'\.\

14. Now build an email for each condition in their own function nodes.
Place three down now, and then wire them like this:

HeATRS

&

] build critical email
| f '

<7 fuellow? —— buildlowemail O

I._ .
\f' build waming email

15. It would be massive overkill to send an email every single second that the fuel level is
checked. To avoid this, you could use an RBE node or increase the inject interval, but
instead | will limit each email to only 1 per hour using three delay function nodes, so that
each message path has its own limit.

Making them separate means if the fuel level goes from warning to low to critical
within an hour, all three messages will be sent unhindered.

a @ = Action Rate Limit ¥
build critical email limit 1 msg'h
(2] : @ All messages x
build low email ~ C—] limit 1 msgth O
z . el = < @ Rate 1 " msg(s) per 1" || Hour
build waming email () limit 1 msgth = L

drop intermediate messages

16. The actual content of each email is totally up to you, but here are some examples | put
together, including timezone-offsetted time in the subject line, two-digit rounded fuel
level, and the limit that was met. (“0”+ minutes).slice(-2) ensures that there is a zero in
front of one-digit minute numbers, such that 12:01 does not appear as 12:1.

Using the to : field, I'll let the manager know if the fuel level has gone critically low; for
example:

¥ Name build critical email &~
Function

1 var d = new Date();

2 d.setTime(d.getTime() - 7*36008080); // timezone offset

2= return {
payload : "Fuel level of ™ + Math.round(msg.payload™18a)/188 +
" gallons is below critical threshold of 258 gallons!”™,
topic : "Fuel Level Critical @ "+d.getHours(}+":"+("@"+d.getMinutes()).slice(-2)},
to : "managerfladdress.com”

CO =~ 0 W

Then, perhaps let maintenance know when the fuel is low so they can refill it:

% Name build low email &
#& Function

1 war d = new Date();

2 d.setTime(d.getTime() - 7*3600888); // timezone offset

3- return {

4 payload : "Fuel level of " + Math.round(msg.payload*l@a)/1ee +

5 " gallons is below low threshold of "+msg.Fuel Low Limit+" gallons!"®,

B topic : "Fuel Level Low @ "4d.getHours()+":"+({"0"+d.getMinutes()).slice(-2),

7 to : "maintenance@address.com”

g+ b

Make sure the current worker is aware that fuel is running out:

% Name build waming email &
Function

1 wvar d = new Date();

2 d.setTime(d.getTime({) - 7*3600008); // timezone offset

3= return {

4 payload : “Fuel level of " + Math.round(msg.payload*18e)/180 +

5 " gallons is below warning threshold of " + msg.Fuel Low Limit*2 + " gallons!™,

6 topic : "Fuel Level Warning @ "+d.getHours()+":"+("8"+d.getMinutes()).slice(-2),

7 to : "workerffaddress.com”

=8 33

You can also enter cc : and bcc : fields containing more addresses in these
function nodes.

NOTE: You may set multiple recipients for any given field, separated by commas. For
example: to : “pparker@address.com, ebrock@address.com, nfury@address.com”
is valid for 3 addresses.

17. Wire all three paths into an email and another three into a debug node.

o ° .
) build critical email O~ limit 1 msgh O e
o /~ — - -

’ o e
) e build low emall [——1 limit 1 msgth

4 @ -8 —— @
\I- build warmning email C—_1 limit 1 msgth o emall

18. | recommend that you create a separate email account for Node-RED to use, mostly
for security, since the node requires less secure apps to be enabled on the account
that sends the messages—recipients do not need to worry about this.

Allow less secure apps: ON

19. Once an account is ready, and less secure apps is enabled, enter the address and
password into the email node, and then make sure “Use secure connection” is ticked.

NOTE: If you did not set recipients in the function node you will need to fill out the
“To” field here. For cc and bcc you must leave it blank and use the function block.

= To

@ Server smtp.gmail.com

< Port 465 # Use secure connection.
& Userid myaddress@gmail.com

& Password

% Name send fuel level alert

https://www.google.com/settings/security/lesssecureapps

20. Deploy the flow.
Node-RED checks the fuel level and alert threshold every second, and when it gets

below double the limit, the set limit, or 250 gallons, it will build an appropriate email and
send it out every hour that that condition is true—but it will send only one type of
message at a time to avoid giving a misleading warning when it is, in fact, critical.

infect 1/s & B

—/-r build critical email - fimit 1 msglh O] il
L ? T i i — i /
fuel low _ build low email : : limit 1 msg/h =<\
x build waming email limit 1 msg/h 1 send fuel level alert

| tested it by slowly turning the potentiometer all the way down and got 3 messages in order:

TIIREONT TIPG2017, 11:11-00 AM node; Bef76371.3d878
Fusl Leye Fusl Level Low @ 11 msg : Obje
wobiect *object vobject
payload: "Fuel level of 1%@2.4 gallons payload: "Fuel level of 368.8 gallons payload: "Fusl lewel of 242.4 gallons
is below warning threshold of 2eee iz below low threshold of 1eae is below critical threshold of 258
gallonsi® gallonst® gallonsi"™
topic: "Fuel Lewvel Low @ 11:11" topic: "Fuel Level Critical @ 11:11"

topic: "Fuel Lewvel Warning @ 11:18"

And | got emails for each!

Fuel Level Critical @ 11:11

Fuel Level Low @ 11:11

Fuel Level Waming @ 11:10

