
Node-RED: PAC twitter Alerts (analog)

The most basic condition for alerts is when some variable takes on a value outside of a
predefined threshold—whether that value is too high, too low, or changing too quickly. These
are easy conditions to test for in Node-RED, so it is fairly straight forward to set up an alert
system based on analog or digital signals from a SNAP PAC system like the Learning Center
used in this example (part number SNAP-PACLC).

In this post, I’ll explain how to set up multiple levels of alerts for an analog input channel.

Before you begin:

⚠ On your groov Box, upgrade Node-RED —ideally, to the latest version,v0.17.4+— to get
node-red-node-twitter 0.1.11+.

You’ll also need the SNAP PAC nodes.

Analog input, multiple levels of alerts

Node-RED can handle complex alert systems, like sending tweets with different content
and different tags based on what range some variable is in. The value I will use is from the
Learning Center potentiometer, read through a SNAP PAC analog input module.

1. Start by regularly checking the level of the input with a once-per-second inject node.

2. Next grab a SNAP PAC Read node. (Install the package if you don’t see them.)

http://developer.opto22.com/nodered/pac/getting-started/node-red-install-pac/
http://www.opto22.com/site/pr_details.aspx?cid=1&item=SNAP-PACLC
http://developer.opto22.com/nodered/pac/getting-started/node-red-install-pac/

3. Double-click the new node to edit it:

4. Then, select the pencil icon to add your PAC device.
Enter the PAC address and configure SSL certificates if using HTTPS; otherwise, just
enter an authentication key for the controller, and continue.

5. I am going to send an alert when the fuel level is low, so Fuel_Level is the tag I will
watch. (This tag is in the PAC Control Learning Center convenience store strategy.)

6. Wire the first groov node to the inject timer, and then drag in a second groov Read node:

7. As you can see, in the Data Type drop-down list, it is possible to read both analog and
digital input and output states, as well as variables, timers, tables, and details from the
controller. After getting Fuel_Level, I am going to read in the 32-bit integer,
Fuel_Low_Limit, once again set up for the convenience store. This provides a “real”
piece of data to compare the analog input to. Reading it every time means that changing
it in the PAC will change Node-RED’s behavior automatically.

http://developer.opto22.com/nodered/pac/getting-started/controller-configuration/#step-4---configure-api-keys
http://www.opto22.com/site/downloads/dl_drilldown.aspx?aid=2977
http://developer.opto22.com/nodered/pac/getting-started/node-red-snap-pac-1/#step-2---configure-the-snap-pac-node

8. msg.payload already has Fuel_Level in it but that’s not a problem—just define a new
property of the message object to put this value in: msg.Fuel_Low_Limit.

9. Now use a switch node to make the comparison, and let the flow through only when the
Fuel_Level (in msg.payload) is below the Fuel_Low_Limit threshold.

10. I am going to go a step further and add an early warning as well, to raise an alert when
the fuel level is approaching low, and another alert with a different message for when the
fuel level is below the hard limit. Select “stopping after first match” to send only one type
of alert at a time, and then click Add.

This will make switch behave like an else-if ladder rather than a series of if
statements, so that no more than one will pass.

11. On the second condition click the msg. drop-down, and then select expression.

12. Choose <=, and then enter “msg.Fuel_Low_Limit * 2” as the expression to get a higher
limit—this way Node-RED will send out an early warning before the low limit is hit.

From the node’s info tab, I know that when a message arrives, the node will
evaluate each of the defined rules and forward the message to the corresponding
outputs of any matching rules. However, I have set the node to stop evaluating rules
once it finds one that matches. (That’s what the “stopping after first match” option does.)
This way only one message goes out as either fuel warning or fuel low—there’s no point
in giving an early warning at the same time as giving a low alert, but I want to make sure
a warning won’t be sent instead of a low alert, so I check low first.

13. To show the flexibility of this node, it is possible to also compare to a hardcoded literal
number, say 300, and send a “fuel critical” message. This condition is even more strict,
so to change the condition order, go ahead and grab the hamburger (☰) handle on the
left of the condition, and then drag it to the top.

You can also label the ports to keep track while wiring in the next nodes:

14. Now build a tweet for each condition in their own function nodes.
Place three down now, and wire them like this:

15. It would be massive overkill to send a tweet every single second that the fuel level is
checked. To avoid this, you could use an RBE node or increase the inject interval, but
instead I will limit each tweet to only 1 per hour using three delay function nodes, so that
each message path has its own limit.

Making them separate means if the fuel level goes from warning to low to critical
within an hour, all three messages will be sent unhindered.

16. The actual content of each tweet is totally up to you, but here are some examples I put
together, including two-digit rounded fuel level and the limit that was met.
Tag the manager if fuel level has gone critically low, for example:

Perhaps tag maintenance when the fuel is low so they can refill it:

Make sure the current worker is aware that fuel is running out:

17. Wire all three paths into a twitter node and another three into a debug node.

18. You may want to have a separate twitter account for Node-RED for your own privacy
and the alert messages can add a lot of noise to your personal account. If you wish to
get notifications on your personal account just tag @yourusername in the tweet strings.

To connect whichever account you choose to this flow, double-click the twitter
node, and then click the pencil icon to add new twitter credentials.

Continue to authenticate with twitter:

If you are not logged in you will hit a login screen:

In this case, go ahead and log in. If you were already logged in, you will see:

Authorize the app, and then close the tab once confirmation is returned.

Add the new Twitter ID credentials to the node settings, and the node setup is complete!

19. Deploy the flow. Now Node-RED checks the fuel level and alert threshold every second,
and when it gets below double the limit, the set limit, or 300 gallons, it will build an
appropriate tweet string and send it out every hour that that condition is true, but will only
send one type of message at a time to avoid giving a misleading warning when it is in
fact critical.

I tested it by slowly turning the potentiometer all the way down and got these messages in
order:

And tweeted each!

